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ABSTRACT

This work presents a method based on supervised learning for the extraction of

parameters in Indium Gallium Zinc Oxide Thin-Film Transistors with alu-

minium contacts, as an alternative regarding analytical and optimisation

methods. The method consists of generating a set of I–V curves of the device of

interest using Spice software. These curves are the input samples of the Artificial

Neural Networks, from which it is intended to predict the different parameters

such as threshold voltage, transconductance and contact resistance, from each

sample curve. By generating the training set itself, it is possible to label each

sample curve, which allows the type of learning to be supervised. The results

show that ANNs provide parameters with which it is possible to model physical

measurements with error rates of less than 5% when extracting the first two

parameters, and errors of between 0.06% and 4.62%, when extracting the three

parameters. In addition, a comparison was made between the results of the

ANNs and the analytical extraction of parameters.

1 Introduction

Nowadays, electronic simulation allows the design

and testing of electronic devices or circuits before

their manufacture, without the need to commit

resources [1, 2]. Although it also allows the analysis

and evaluation of devices already manufactured,

which allows understanding their operation and

making future optimisations. This is of great support

to the growing emergence of new technologies and

increasingly efficient devices [3].

Simulation software works by using mathematical

models of the different devices supported, these

models represent the behaviour of the devices in the

real world. The models are made up of variables

known as parameters, which can change from one

device to another. The value assigned to them will

define whether the simulation will correspond to the

real-world behaviour.

For this reason, it is of utmost importance to know

the parameters of the devices, for which a process

known as parameter extraction is performed. Ana-

lytical methods can be found in the literature to
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perform this task [4–15], and methods based on

Genetic Algorithms (GA) [16–19] and Fuzzy Logic

(FL) [20], have also been proposed as an alternative.

These methods require a lot of experience and

knowledge in the operation of the device models or

defining the correct fitness function as in the case of

GAs, to obtain good results. Not to mention emerging

technologies, although more efficient devices, result

in complex models with a large number of parame-

ters, making parameter extraction a complex task.

Recently, the application of machine learning in the

process of parameter extraction has begun to be

explored [21, 22].

Therefore, a method using ANNs is proposed to

perform parameter extraction applied on TFT IGZO

with Al contacts. The ANNs are trained to identify

the parameters of a set of samples, consisting of I–

V curves of the device. This work shows that using

ANNs are an alternative to provide parameters that

allow a good fit between physical measurements and

those simulated with the extracted parameters. The

contribution of this study is a method of parameter

extraction with which it is not necessary to have

extensive experience in this task, nor to have a deep

knowledge of the mathematical models of the devices

Although basic knowledge of the operation of NNs is

required, their programming and implementation is

not complicated due to the specialised Machine

Learning libraries available today in different pro-

gramming languages. On the other hand, using this

method it is not necessary to process each I–V curve

individually as it is in the analytical methods. A

trained NN can receive a single file with many curves

and provide results almost instantaneously. In this

paper not only a method for extraction is reported,

but there are also two experiments, one in which the

flexibility of NNs to compensate for the parameters to

be extracted using their acquired experience is tested.

The second one proposes a quick solution for when

there are not enough samples to perform extraction in

devices with different dimension.

Due to the early application of supervised learning

for parameter extraction, the extraction of the most

relevant transistor parameters such as threshold

voltage, transconductance and contact resistance has

been limited. The method was tested by extracting in

different transistors manufactured by the

Nanoscience, Micro and Nanotechnologies Centre of

the National Polytechnic Institute, Mexico.

The rest of the paper is divided as follows: Sect. 2

presents a quick review of the state of the art; Sect. 3

introduces the TFT model and briefly presents the

fundamentals of ANNs; Sect. 4 introduces the pro-

posed method for parameter extraction; Sect. 5 pre-

sents the experiments carried out; Sect. 6 presents the

results and discussion; and the paper closes with

conclusions in Sect. 7.

2 Previous works

This section presents work related to the extraction of

parameters in different types of transistors. Amongst

the methodologies based on mathematical analysis,

the following works stand out.

In [4], a method for parameter extraction in a short-

channel amorphous InGaZnO TFT using experi-

mental and simulated measurements was proposed.

In [5], a comprehensive review of the most commonly

used methods for calculating the threshold voltage in

MOSFET devices was presented and includes work

where the methods were applied to real devices. In

[6] a parameter extraction for the AIM-Spice model of

an amorphous TFT, avoiding non-linear optimisa-

tion, was proposed, the method was based on the

integration of experimental measurements, and was

tested in the linear and saturation regimes. A dis-

cussion on the use of technology based on OTFTs,

OLETs, OLEDs and OPVs was presented in [7],

concentrating on OLET devices, which have optical

and electrical properties, the authors analysed the

device in terms of drive current, threshold voltage,

mobility and others. With the transfer curve analysis,

they extracted the mentioned parameters. In [8], a

method for parameter extraction of a polycrystalline

silicon (poly-Si) TFT in weak conduction and triode

region was proposed. They used two functions based

on the integration of experimental measurements. In

[9], an analysis of the behaviour of the OTFT, in the

top (TC) and bottom (TB) contact, was made by

modifying the shell drift model with respect to the

series resistance. Using the mathematical model, the

contact resistance, mobility and drain current, in

linear and saturation regime, were extracted. In [10],

a comparison of the performance of top and bottom

contact OTFT structures was performed using two-

dimensional numerical simulations. An estimation of

the contact resistance using the conventional trans-

mission line method and modified transmission line
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method (M-TLM) was also performed. In [11], an

accurate and broadband method for extracting

parameters from a small-signal model in hetero-

junction bipolar transistors (HBTs) was presented.

An equivalent HBT circuit was used for the extrac-

tion of access resistance and parasitic conductance. In

[12], the limited behaviour of the contact resistance in

an organic pentacene transient is described by sim-

ulation and mathematical modelling. An analysis of a

difference to the Shockley model, which is due to a

non-linear behaviour of the contacts in organic

devices, was performed. In [13], the specific contact

resistance (pc) was determined between an amor-

phous indium-gallium-zinc-oxide (IGZO) semicon-

ductor and different contact electrodes was found

using TFT transistors. Chemical states of the con-

tacts/semiconductor interfaces were used and anal-

ysed with X-ray photoelectron spectroscopy (XPS) to

explain the differences in resistance. It was found that

the lowest pc was obtained using Ti/Au. In [14] three

methods were used to extract the contact resistance of

CNTFETs. The transfer length method (TLM) and

two variants of the Y-function method were applied.

It was found that the standard Y-function method

does not give correct resistance values. In [15], a

methodology was proposed to determine the asym-

metrical source and drain resistances RS and RD from

MoS2 field-effect transistors (EM–FETs). By combin-

ing capacitance–voltage (C–V) and current–voltage

characteristics, these resistances were extracted sep-

arately. First, the authors used C–V frequency dis-

persion from 0.3 to 10 kHz, then RS and RD were

characterised by removing parasitic capacitances

from the pad. The proposal was compared with the

channel resistance method.

Also, works for parameter extraction based on GAs

can be found. In [16] the authors proposed a hybrid

algorithm for parameter extraction in OTFT transis-

tors, based on the bee colony evolutionary algorithm

(EA) to which they added a GA operator. The pro-

posed algorithm extracted parameters from two

devices and the results were compared with a simple

GA. In [17] a machine learning approach to nonlinear

regression with six input variables was used to

measure the impact of process variability on the

threshold voltage of a silicon-on-insulator (SOI)

junctionless transistor (JLT). The GA was imple-

mented in MATLAB to test the stated hypothesis. In

[18], a GA was used to optimise the parameters of a

Carbon Nanotube Field Effect Transistor (CNFET),

the performance of these devices depends on

parameters such as the CNT diameter, the number of

nanotubes and the spacing between the inter-tubes.

The aim of this work was to minimise the Power-

Delay Product (PDP). A compact analytical model for

organic field effect transistors (OFETs) is presented in

[19]. The proposed model describes the behaviour of

the device in the above-threshold and below-thresh-

old regime. This was achieved by calculating the total

OFET current as the sum of both components where

was added a transitive function to smooth the junc-

tion. A GA-based approach was also used as a tool

for parameter extraction.

In [21] there is one of the few works where machine

learning is used to extract parameters from IGZO

TFTs, where 618 samples of I-V curves were used. In

this work the authors start with an unsupervised

learning approach using K-means to group the sam-

ples into 4 performance categories, and then use

conventional NNs and Deep Neural Networks

(DNN) to perform the parameter identification. By

using physical measurements, they first performed

analytical extraction, which allowed them to use the

supervised learning approach. Their results show

error rates of up to 10.6% in mobility extraction, up to

131.25% in subthreshold swing, 26.28% in threshold

voltage and up to 71.36% in on/off current ratios

using NNs. In [22] a work of extraction of extraction

in Insulated Gate Bipolar Transistor (IGBT) is pre-

sented, where the extracted parameters were break-

down voltage (BV), on-state voltage (Von), static

latch-up voltage (V1u), static latch-up current density

(J1u) and threshold voltage (VT). The authors propose

a two-layer NN to predict the above parameters

using as inputs device structural parameters (not I–

V curves) such as N-drift doping, N-buffer doping,

P-well doping, P ? well doping, N-drift thickness,

N-buffer thickness and channel length. Their results

showed average error rates of up to 7.7%. In both

works the extraction of RC, which is a complicated

parameter to extract due to the need for physical

measurements of devices with different dimensions,

was not performed.
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3 Theorical background

3.1 TFT model

TFTs (Thin Film Transistors) are MOSFET (Metal

Oxide Semiconductor Field Effect Transistor) devices,

and are used in today’s displays, such as those in

mobile phones and smart TVs, whose development is

progressing rapidly. The mathematical model

describing the current behaviour of a TFT is given by

Eq. (1) (model implemented in AIM Spice [23]).

Current ID above the threshold voltage occurs

when VGT[ 0.

ID ¼
lFETCox

W

L
VGTVDS �

V2
DS

2asat

� �
; VDS\asatVGT

lFETCox

W

L

V2
GTasat

2

� �
; VDS � asatVGT

8>><
>>:

;

ð1Þ

where lFET is the effective mobility of the device, Cox

is the capacitance of the oxide layer, given by the

dielectric permittivity constant (ei) divided by the

thickness of the oxide layer (Tox), W and L are the

width and length of the channel respectively; VGT is

the result of the applied gate and source voltage,

minus the threshold voltage (VT); VDS is the applied

voltage between drain and source terminals. Finally,

asat is the proportionality constant of Vsat (saturation

voltage).

The current ID below the threshold voltage is given

by Eq. (2).

Isub ¼ MUS

� Cox

W

L
V2

sthexp
VGT

Vsth

� �
1 � exp �VDS

Vsth

� �� �
;

ð2Þ

where MUS stands for electric mobility; Vsth is the

product of ETA (subthreshold ideality factor) and Vth

(Eq. 3).

Vth ¼ kB � TEMP=q; ð3Þ

where kB is the Boltzmann’s constant, TEMP is the

temperature and q is the electron charge magnitude.

A part of the model can be summarised by the

parameter of transconductance (KP), this parameter

is widely used by circuit and device designers, which

is given by Eq. 4, where e0 is the vacuum permittivity.

KP ¼ lFETCox ¼ lFET
eie0

tox
: ð4Þ

KP is one of the parameters to be extracted in this

research, and with which it is possible to calculate the

mobility which is a parameter used by people who

analyse the behaviour of devices [24]. When the

induced channel extends from the source to the

drain, the transconductance can be rewritten as:

b ¼ KP
W

L
: ð5Þ

Considering that the material of the device pre-

sents resistance, the mobility and electric current will

be inversely proportional to the resistance. And the

total resistance RT of a device is given by Eq. (6).

RT ¼ RC þ RCH ¼ VDS=ID; ð6Þ

RC ¼ RS þ RD; ð7Þ

where RC is the contact resistance, RCH is the channel

resistance, RS and RD are the resistances at the source

and drain terminals respectively [12, 14].

3.2 Artificial neural networks

ANNs or just NNs are a simplified approximation of

the brain, represented by an ensemble of artificial

neurons. The artificial neuron concept was proposed

by Warren S. McCulloch and Walter Pitts in 1943 [25].

NNs have been widely used for pattern recogni-

tion, big data analysis, feature extraction, classifica-

tion, regression, system identification, amongst other

applications [26]. NNs are inspired on the biological

functioning of how living things learn from experi-

ence. NNs acquire knowledge from a set of repre-

sentative examples or samples in a process known as

training. There are three basic ways in which the

network learns: supervised, unsupervised and rein-

forcement learning.

In supervised learning, the set of samples is pre-

labelled, i.e. for each of the examples, the correct

answer is known, usually used for classification and

regression problems. In unsupervised learning, the

answer corresponding to each training sample is not

known, the NN adopts the underlying structure of

the training set; usually, the unsupervised NNs are

employed for clustering problems. In reinforcement

learning, the goal is to obtain intelligent agents cap-

able of taking the best action in given situations or

environments, with the aim of obtaining the
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maximum reward or the least punishment. Rein-

forcement learning is used in control, autonomous

systems and game theory [26].

Formally, the output of a neuron is given by

Eq. (8), where the product of an input p and a

synaptic weight w, plus a bias b, is evaluated in an

activation function f.

a ¼ f wpþ bð Þ: ð8Þ

The activation function f is responsible for setting a

range of values over which the network will be

working, and the function is selected by the nature of

the problem.

A neuron can have multiple inputs (pR), and the

output of the neuron is given by Eq. (9), where each

input is multiplied by a corresponding synaptic

weight. The output of the multi-input neuron can be

written in vector form (Eq. 10), where W is the vector

of weights and p is the vector of inputs.

a ¼ f w1;1p1 þ w1;2p2 þ w1;3p3 þ � � � þ w1;RpR þ b
� �

;

ð9Þ

a ¼ f Wp þ b
� �

: ð10Þ

In a layer of neurons s, each neuron has an output

ai. Each individual input p1…pR of the input vector p

is connected to each neuron and is multiplied by the

corresponding weight of the matrix W. Each neuron

has its bias bi and its activation function f. So, the

outputs of the neurons are given by Eqs. (11) and

(13).

a1 ¼ f1 w1;1p1 þ w1;2p2 þ w1;3p3 þ � � � þ wS;RpR þ b1

� �
;

ð11Þ

a2 ¼ f2 w2;1p1 þ w2;2p2 þ w2;3p3 þ � � � þ wS;RpR þ b2

� �
..
. ;

ð12Þ

aS ¼ fS wR;1p1 þ wR;2p2 þ wR;3p3 þ � � � þ wS;RpR þ bS
� �

:

ð13Þ

In vector form the output of a layer of neurons is

given by Eq. (14). Where, b is the bias vector.

a ¼ f Wp þ b
� �

: ð14Þ

In a network with a number n of layers, the output

generated by each neuron in the first layer is the

input to the second layer and so on. So, each layer has

its vector of inputs p, its matrix of weights w, a bias

vector and its activation function. The output of 3

layers and the total network output is given by the

following equations. The output of network layer n is

given by Eq. (19).

a1 ¼ f1 W1p þ b1
� �

; ð15Þ

a2 ¼ f2 W2a1 þ b2
� �

; ð16Þ

a3 ¼ f3 W3a2 þ b3
� �

; ð17Þ

a3 ¼ f3 W3f2 W2f1 W1p þ b1
� �

þ b2
� �

þ b3
� �

; ð18Þ

an ¼ fn Wnan�1 þ bn
� �

: ð19Þ

As mentioned, learning is obtained in the training

stage, where the error between the expected output

and the obtained output is obtained in an iterative

way, known as epochs. In supervised learning, the

backpropagation algorithm is the most widely used.

This gradient-based algorithm aims to reduce the

mean square error MSE (Eq. 20). In training, at each

epoch, the synaptic weights w and the bias are

modified, obtaining the minimum error or up to the

defined number of epochs.

F xð Þ ¼ E e2
� 	

¼ E t� a2
� �� 	

; ð20Þ

wm
i;j kþ 1ð Þ ¼ wm

i;j kð Þ � a
oF

owm
i;j

; ð21Þ

bmi kþ 1ð Þ ¼ bmi kð Þ � a
oF

obmi
; ð22Þ

where t is the target, or desired output, and a, is the

output obtained, k is the epoch number, m is the layer

number, i and j are the identifier of the weights and

bias, a is the learning factor, which determines the

change in w and b [27, 28].

4 Parameter extraction method

Figure 1 summarises the methodology for parameter

extraction using NNs. The extraction steps are sum-

marised as follows:

(1) A training dataset is constructed using I-V

curves obtained by LTspice [29] simulation.

(2) Curve data such as VGS and ID is normalised or

rescaled with Eq. (24).

(3) The total samples (I–V curves) are divided into

two sets, one for training and one for

validation.
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(4) For each simulated curve (input) its parameters

(outputs or targets) are known.

(5) With the data sets ready, the training of NNs

with different numbers of layers and neurons is

started.

(6) If the determination coefficient of the trained

NN model (R2) is greater than 90%, then, the

model and its results are saved.

(7) Once the NN has been trained, it is used to

extract the parameters of physical

measurements.

Finally, the extracted parameters are employed to

simulate the device, and compare with the physical

measurements and calculate the percentage error

between the curves.

4.1 Training dataset and preprocessing

The dataset of samples for training the NNs consists

of a set of I–V curves of the transistor. These curves

are obtained by simulation, using a given model

(defined in the simulator). In this case, level 1 of the

SPICE Model for MOSFETs is used, although it is a

basic model, it was used because it allowed mod-

elling the behaviour of the TFTs. To build the training

dataset, the first step is to define the parameters of

interest, i.e. the parameters that will be extracted. In

this case the parameters of interest are KP, VT and RC.

The reason of this selection is that these electrical

parameters are frequently used to characterise and

model the TFTs electrical behaviour. The simulations

will be performed by varying the values of the

parameters of interest. The range of variation and the

number of simulations that make up the training set

will define how knowledgeable or robust the NN

model will be. In the present work, an initial analyt-

ical parameter extraction was performed on one of

the physical transistors, and these results were used

as the basis for defining the range of values with

which the simulation would be performed. It is

important to note that this range of values must be

sufficiently wide for the NN to provide adequate

results (with low error percentages). Depending on

the results obtained from the extraction using the

trained NNs, the training sets can be complemented

with more samples to improve the performance of

the NNs.

The process for carrying out the simulations is as

follows. To extract KP, VT and RC, starting to set in

the simulator (optional) in this case LTspice, KP and

VT are set to their initial value KP = 1 9 10–6 A/V2

and VT = 1.5 V, keeping KP and VT as constants, RC

is swept from 0 to 6 9 103 X with increments of

1 9 103 X. Then the value of VT increases, KP remains

constant, VT = 1.8 V and again RC is swept. When RC

was swept for each value of VT (up to 3.6 V), now KP

Fig. 1 General diagram of the

methodology for the extraction

of parameters
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is increased and VT starts with the initial value,

KP = 1.4 9 10–6 A/V2, VT = 1.5 V and so on until KP

reaches its maximum value. This is the most time-

consuming step, if done by one person. In each run,

the ID data are stored. The approximate time is 120

samples of I–V curves in 1 h. The process in which

the parameters are swept could be done by pro-

gramming and using the mathematical models of the

device Eqs. (1) to (7), although the possibility of

human error in programming is not ruled out, so it

was decided to use simulation software which uses

the same mathematical models and ensure that the I–

V samples are accurate. For the experimentation the

following data sets were created. The first set (289

samples) to extract the parameter KP and VT is given

by Eqs. (23) and (24). A second set was made to

extract KP, VT and RC (448 samples), which is given

by Eqs. (25), (26) and (27). The third set (392 samples)

is given by Eqs. (28), (29) and (30). And finally, the

fourth set is made up of the union of the second and

third set with a total of 840 samples.

K ¼ 1 � 10�6/V2 þ kDjk ¼ 0; 1; . . .; 16
n o

; ð23Þ

where D = 0.2 A/V2.

V ¼ 1:0V þ kDjk ¼ 0; 1; . . .; 16f g; ð24Þ

where D = 0.2 V.

K ¼ 1x10�6A/V2 þ kDjk ¼ 0; 1; . . .; 7
n o

; ð25Þ

where D = 0.4 A/V2.

V ¼ 1.0V þ kDjk ¼ 0; 1; . . .; 7f g; ð26Þ

where D = 0.3 V.

R ¼ 0Xþ kDjk ¼ 0; 1; . . .; 6f g; ð27Þ

where D = 1 9 103 X.

K ¼ 1:2x10�6A/V2 þ kDjk ¼ 0; 1; . . .; 6
n o

; ð28Þ

where D = 0.4 A/V2.

V ¼ 1:0V þ kDjk ¼ 0; 1; . . .; 7f g; ð29Þ

where D = 0.3 V.

R ¼ 0Xþ kDjk ¼ 0; 1; . . .; 6f g; ð30Þ

where D = 1 9 103 X.

The voltages used were VGS from - 6 to 6 V and

VDS = 6 V, because the physical measurements were

taken at these voltages.

The pre-processing step consists of rescaling the

data, usually in the ranges [- 1,1] or [0,1], depending

on the nature of the data. This step allows each

sample to be transformed in a way that gives more

information to the NN to facilitate pattern detection.

In this case, each input was divided between the

highest value it could have, thus obtaining the range

[0,1].

4.2 NNs training

When solving a classification or regression problem

using NNs it is necessary to train more than one

network model (number of layers and neurons), as

there is no way of knowing which NN will be the

most suitable for each problem. Although it has been

observed that for regression problems, the higher the

number of layers and neurons, the higher the learn-

ing rate, this is not always true [27]. So, networks

with different numbers of layers, neurons, activation

functions and learning factors must be tested until

the models with the highest learning from the data

are found.

The best way to find the correct values of the

hyperparameters (characteristics) of the network is to

use the grid search [30]. This technique consists of

sweeping through the different hyperparameters

from a pre-determined initial value to a final value,

combining all of them to identify which one provides

the best performance. As mentioned above, in order

to find the best learning NN model, approximately 24

NNs were trained, of which 8 of them performed the

best. Table 1 shows the top 8 models that were

trained to perform TFT parameter extraction. The

function in the hidden layers is Relu and in the output

layer Linear. Each model was trained with 2000

epochs. NN models with a smaller number of layers

Table 1 Top 8 trained NNs models

NN model No. layers No. of neurons in each layer

1 2 128/64

2 2 256/32

3 2 256/64

4 2 256/128

5 2 256/256

6 3 128/64/32

7 4 256/128/64/32

8 5 256/128/64/32/16
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and neurons presented underfitting (lack of learning)

and with larger NNs, learning does not increase (a

complex NN will not always be the best), and in

computing when two NN models have the same

performance, it is better to select the smaller one.

The training of the different NNs models was

implemented using Google Colab [31], which is a

Jupyter-based environment for programming in the

Python language, and it is possible to make use of

Google computing resources. The library used was

Keras from Tensorflow [32] which is intended for

training different types of NNs.

4.3 NN evaluation

Metrics for evaluating the results of parameter pre-

diction (extraction) are presented in this subsec-

tion. In addition to the MSE and R2 in the parameters

in each of the NN models. In the extraction of

parameters from the physical measurements, the

percentage error was calculated using the area under

the curve (trapezoid method) in Eq. (31) between the

experimental curve and those modelled with the

extracted parameters.

% error ¼ areaext � areareal

areareal










� 100: ð31Þ

In computing, the selection of the best NN model is

done by simply taking the model with the highest

accuracy in case of classification or R2 in regression,

considering only the results on the validation sam-

ples. In this work, the best model would be the one

that obtained the highest R2 in the validation sam-

ples, for example, model 8 in Table 3. But it is pos-

sible to use physical measurements as a test set to

perform the parameter extraction, using not only the

model 8 that was the best, in this work we tested the

best 8 out of 24 models. In this way, and for this

problem, it is recommended to have more than one

NN model trained, and the best one will be the one

that allows to obtain the lowest error percentage.

5 Experiments

This section describes the different experiments and

analyses that were performed during the training of

the NNs. This research was developed incrementally,

starting with the extraction of two parameters (KP

and VT), once it was verified that the NNs extracted

parameters from physical measurements with good

accuracy, extraction of KP, VT and RC was carried

out. For the extraction tests once the training of the

NNs models was completed, physical measurements

of IGZO TFTs were used, which were made with

corning glass and at room temperature (25 �C), it

should be mentioned that the proportionality satu-

ration voltage is not required by the Spice model

used. The geometrical parameters are presented in

Table 2. Because there is more than one TFT transis-

tor, and also with different dimensions (Table 2),

from now on, each physical measurement will be

identified with a number, e.g. T1M1 refers to tran-

sistor 1 with dimensions W = 80 um and L = 80 um,

M1 refers to the first of all measurements with the

same dimensions. Also, can be found ‘‘lin’’ to refer to

measurement in the linear regime, if not present the

physical measurement is in the saturation regime.

5.1 Experiment 1

In the first experiment, the first data set was used to

train NNs to learn to extract the KP and VT param-

eters in both the saturation and linear regimes. The

training data are intended for a TFT with a W = 80

um, L = 80 um and a Tox = 15 nm (T1). After the NN

models are trained and stored, they are tested to

perform the extraction of physical measurements.

The values provided by the NN must be treated in

the inverse way in which they were pre-processed to

obtain the real value of the parameter to be used in

the electronic simulator.

The physical measurements used for the tests in

this experiment correspond to T1 with two mea-

surement conditions (VGS application). It was

observed that the behaviour changed slightly if VGS

was applied from negative to positive (NP) and vice

Table 2 Dimensions of the transistors from experimental

measurements

Transistor W (um) L (um) Tox (nm) No. of measurements

T1 80 10 15 3

T2 40 10 15 2

T3 80 5 15 2

T4 40 40 15 1

T5 80 20 15 1

T6 80 80 15 1

T7 40 5 15 1
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versa (PN). If no NP or PN is specified, the mea-

surement was taken with VGS sweep from negative to

positive.

Figure 2 shows how the device (T1) changes its

transfer curve when measured from negative to

positive and from positive to negative. Not all tran-

sistors were measured in both ways, though. If not

specified with a PN, it means that the physical mea-

surement was obtained with VGS from negative to

positive. The analysis of the hysteresis that occurred

in the fabricated transistors will be reported in a

separate article.

5.2 Experiment 2

In this experiment, no training of NNs is performed,

here was used one of the NN models that was trained

in experiment 1. During experiment 1, the NNs

learned from samples that did not have contact

resistance. The aim of this second experiment is to

analyse the results of the NN already trained when it

is fed with a sample to which RC was added.

To achieve this, the parameters extracted from KP

and VT in experiment 1 were used, which allowed the

behaviour of T1 to be modelled accurately. Using

again the LTspice simulator, the parameters KP and

VT were set as constants, and 6 runs were performed,

where in each of them the contact resistance had the

following values: 0 X, 1 9 103 X, 4 9 103 X, 16 9 103

X, 32 9 103 X and 64 9 103 X.

The 6 simulated samples with RC increasing from 0

to 64 9 103 X were stored and pre-processed to feed

the NN model 1 and extract its KP and VT parame-

ters. This experiment allows us to demonstrate how

NNs can make use of the knowledge acquired during

training and approximate results for input samples

that have information that was not necessarily

learned.

5.3 Experiment 3

The main disadvantage of NNs and other machine

learning methods is the need for sufficient samples to

learn, plus the fact that each dataset is problem-spe-

cific. So, if an NN was trained to extract parameters

with certain dimensions such as W = 80 um and

L = 10 um, as in experiment 1, the NN would not be

able to extract parameters from a transistor with

different dimensions and it would be necessary to

generate the training set for that other device. The

process of making a data set for each of the transis-

tors available in this research (Table 2) would become

a tedious task. Furthermore, for some combination of

W and L the ID current would be the same as in the

case of T4 and T6. In a future extractor, or even in a

commercial extractor, generalised and specialised

system for extraction for an established technology,

where the geometrical factors are always the same,

including the parameters W, L and Tox during NN’s

training would be worthwhile and absolutely

necessary.

Fig. 2 T1 transferential curve

with different measurement

condition
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In the third experiment, the geometrical parame-

ters of the samples that make up the first dataset were

set to be removed. This is achieved by normalising

the ID current of each of the samples. This normali-

sation was performed using Eq. (32), where W = 80

um and L = 10 um. The NN models (first three in

Table 1) were then re-trained with the normalised

sample set. After training, the NNs are ready to

perform the extraction tests on the physical mea-

surements, in order to feed the NNs, the measure-

ments must also be normalised using their own

channel widths and lengths.

In this experiment, a way was proposed to avoid

the need for examples for each problem to be solved

by the NNs.

Inorm ¼ L

W
IDð Þ: ð32Þ

5.4 Experiment 4

In the fourth experiment, training of NN models was

carried out for dataset number 2 (Eq. 25, 26, 27),

training was carried out for dataset number 3

(Eqs. 28, 29, 30) and training was also carried out by

joining these datasets. This fourth experiment aimed

to obtain NNs capable of extracting KP, VT and RC.

The data were not normalised to remove the W and

L parameters (Eq. 32). For this experiment the data-

sets are designed to extract from a TFT with W = 80

um and L = 10 um.

The training performed on the first dataset was

done as would commonly be done in computing,

focussing on obtaining the most learning possible

with the highest score on the validation samples. As

mentioned in 4.2, this is achieved by treating the data

in a way that provides the most knowledge for better

pattern detection. For set 3 and the fourth set formed

by the union of the second and third sets, the I–

V curve samples did not undergo a special pre-pro-

cessing to increase learning and have an excellent

score in the validation samples, only the ID current

was increased one hundred times, with the purpose

of having larger values and facilitating the identifi-

cation of RC, since as shown in Fig. 5a, the effect of

RC\ 4 9 103 X is not noticeable to the naked eye,

and only the ID values were used when VGS[ 1.9 V,

which is the most significant section of the curve.

After completion of the NN models training for the

different datasets, the extraction tests were per-

formed using the physical measurements of the T1.

6 Results and discussion

This section presents the results obtained in the dif-

ferent experiments described in the previous sec-

tion. To validate the results, a comparison of the

modelling obtained from the physical measurements

was made, using the parameters extracted by the NN

models and an extraction performed by the analytical

method (using Eq. 1). Thereby, the accuracy achieved

by the proposed method is demonstrated. The ana-

lytical extraction was only performed to extract KP

and VT in saturation regime, analytical extraction of

RC is not available.

6.1 Results of experiment 1

The training of the NN models (Table 1) showed

good performance (no overfitting or underfitting).

Table 3 presents the MSE and R2 obtained by each

model in the validation samples, in both saturation

and linear regimes. The models can predict the

parameters KP and VT up to 99% average precision

rate.

Figure 3a shows the modelling with the extracted

parameters at T1, measured from negative to positive

(measurement 2), where NN model 1 obtained an

error rate of 1.67%, model 2 obtained 3.01%, model 5

obtained 2.07%, model 7 obtained 1.42% and AM

obtained 9.67%. Figure 3b shows the modelling of the

T1 measurement, measured from PN (measurement

Table 3 Dimensions of the transistors from experimental

measurements

NN model Saturation Linear

MSE R2 MSE R2

1 1.150 9 10–4 0.997 3.964 9 10–5 0.999

2 4.747 9 10–4 0.991 5.598 9 10–5 0.998

3 3.119 9 10–4 0.994 4.621 9 10–5 0.999

4 8.763 9 10–4 0.998 2.714 9 10–5 0.999

5 1.802 9 10–4 0.996 2.432 9 10–5 0.999

6 1.476 9 10–4 0.997 3.141 9 10–5 0.999

7 1.643 9 10–4 0.996 7.609 9 10–5 0.998

8 1.139 9 10–4 0.998 2.348 9 10–5 0.999
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3), where NN model 1 obtained an error rate of

2.61%, model 2 obtained 2.03%, model 4 obtained

3.43%, model 7 obtained 0.21% and AM obtained

19.81%.

Figure 4a shows the modelling with the parame-

ters extracted from T1 in linear regime. In Fig. 4a

(negative to positive measurement), NN model 5

obtained an error rate of 3.61%, model 6 obtained

1.25%, model 7 obtained 3.47% and model 8 obtained

2.03%. In Fig. 4b (positive to negative measurement),

NN model 3 had an error rate of 2.09%, model 5 had

2.26%, model 6 had 0.17% and model 8 had 2.20%. In

the linear regime measurements, extraction with an

analytical method is not available.

6.2 Results of experiment 2

In order to analyse the effect of RC, the TFT was

simulated with the parameters extracted in physical

measurement 1, of T1 by model 1. Where

KP = 1.6107 9 10–6 A/V2 and VT = 2.667 V are set as

constants. Figure 5a shows that there is not signifi-

cant change from 0 to 4 9 103 X, but from 16 9 103 X
the electric current starts to decrease, having a large

loss at 64 9 103 X.

By feeding the NN model 1 with the transfer

curves with different resistances (Fig. 5a) it was

found that the NN compensates the value of KP and

VT to obtain parameters that fit the input curves.

Figure 5b shows the fittings obtained by using the

Fig. 3 TFT modelling with

extracted parameters in

negative-to-positive and

positive-to-negative

measurement (saturation

regime), a corresponds to the

measurement supplied from

negative to positive, and

b from positive to negative
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parameters extracted by the NN model 1, I–V curve

with a RC of 16 9 103 X, obtained an error rate of

1.64%, I–V curve with 32 9 103 X, obtained 2.38%

and I–V curve with 64 9 103 X obtained 11.48%.

Figure 6a shows the percentage of error obtained

between the curves with increased resistance and

those modelled with the extracted parameters, where

it can be seen that the error increases when RC is

higher. Which means that the NN is able to com-

pensate the parameters at KP and VT on curves with

resistance of about 32 9 103 X, for larger values the

error starts to become significant.

Figure 6b and c show the trend of the parameters

VT and KP, where it is observed that VT decreases for

resistance values from 10 9 103 X, remaining con-

stant at approximately 2.5 V for resistance values

higher than 32 9 103 X. KP also appears to be

inversely proportional to RC in an almost linear

trend, this behaviour is the same for mobility

(Fig. 6d), these two parameters are directly affected

by increasing resistance.

6.3 Results of experiment 3

With the dataset where the ID current was normalised

so as not to depend on the geometrical parameters

(W and L), the first 3 NN models were trained

(Table 1). This experiment was performed only in the

saturation regime. Table 4 shows the evaluation

Fig. 4 TFT modelling with

extracted parameters in

negative-to-positive and

positive-to-negative

measurement (linear

regime), a corresponds to the

measurement supplied from

negative to positive, and

b from positive to negative
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achieved by the models with the validation mea-

surements samples, where the 3 models reached

R2 = 0.99.

Figure 7a presents the T3 measurement and the

curves modelled with the parameters extracted by

three NN models trained with the normalised current

(Eq. 24) and by the analytical method. Where model 1

obtained an error rate of 12.4%, model 2 obtained

16.49%, model 3 obtained 22.98% and AM obtained

9.86%. Figure 7b presents the modelling with the

extracted parameters for T7, where model 1 obtained

an error rate of 11.79%, model 2 obtained 14.22%,

model 3 obtained 17.62% and AM obtained 15.52%.

The results show an increase in modelling error with

the parameters extracted by the NN models that were

trained with the normalised I–V curves to remove the

channel width and length. In this comparison, the

AM has a smaller error rate compared to the NNs.

Figure 8 shows the average error rate (the 3 NN

models) obtained for the 7 transistor sizes (Table 2),

where an error between 12 and 19% is observed, with

a peak of up to 25% for the W = 80 um and L = 10 um

Fig. 5 Behaviour of T1 with

RC added and modelled with

parameters extracted by NN

model 1, a corresponds to the

I-V curve and its variation

with resistance, and b presents

the fit of three curves with

extracted parameters
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transistor. The total average error of 16.89% could be

acceptable considering that it was not necessary to

have samples for each transistor and the extracted

parameters are close to the desired one, these values

could be adjusted by the expert personnel in charge

of the extraction task, this manual adjustment is also

often used in analytical methods when the result

presents a notable error between the physical mea-

surement and the one modelled with extracted

parameters.

6.4 Results of experiment 4

This section presents the results of the extraction of

KP, VT and RC, for which the training of NN models

was carried out using three different datasets. Fig-

ure 9a presents the average performance obtained by

the eight trained NN models (Table 1) using the

second dataset. This was achieved by increasing the

current of each sample, dividing them by the maxi-

mum current of the set, which was ID-

= 2.856384 9 10–4 A. For example, if the current

value was ID = 6.8323 9 10–5 A, when VGS = 6 V,

after division the value would be ID = 2.392 9 10–1 A.

This increase allows to have a greater distance

between each sample and thus facilitate the identifi-

cation between them and as a result, to have a better

training of the NNs. After training, a performance of

99.4% for KP, 99.7% for VT and 87.5% for RC was

obtained. Having the lowest learning in RC in 87.5%

due to the slight effect that this parameter has in

comparison with KP and VT.

Figure 9 presents the physical measurement of

T1NP, together with the curves obtained using the

extracted parameters. Where the four models with

the lowest error percentages were selected, model 4

had 14.25% error, model 5 had 45.16% error, model 6

had 64.39% error and model 7 had 19.53% error.

Fig. 6 Percentage error in parameter extraction (a), threshold voltage (b), transconductance (c) and mobility (d) as a function of RC

Table 4 Evaluation of the NN models using normalised current

NN model MSE R2

1 2.209 9 10–5 0.996

2 2.258 9 10–5 0.999

3 2.244 9 10–5 0.998
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The lack of fit of the physical measurements with

the parameters extracted by the NNs was due to low

KP values. This happened because the focus was on

the NNs predicting the parameters as accurately as

possible during their training, falling into what is

known as overtraining, which means that the NNs

learn the input and output data ‘‘by heart’’, but with

new samples the results are erroneous.

To improve the results, training was performed

with the third dataset, but for this training, the

samples were not pre-processed using the maximum

current value of the set, but only increased using ID-

= ID•100. For example, if in one sample the current

when VGS = 6 V was ID = 6.5256 9 10–5 A, after

multiplication, it would be ID = 6.5256 9 10–3 A, this

slight increase allows to improve the identification of

KP and VT, but not to the point of overtraining again.

After training the eight NN models, an average per-

formance of 94.6% was obtained for predicting the KP

parameter, 99.1% for predicting VT and only 21.3%

for predicting RC. The decrease in the identification of

the RC parameter is noticeable when the ID of the

samples is not increased, and the NNs are allowed to

gain as much knowledge as they can from the data

themselves.

Figure 10a presents the physical measurement of

T1NP, and the curves obtained using the extracted

parameters, again, with the intention of not

Fig. 7 Modelling

of two devices, T3 (a) and

T7 (b) using parameters

extracted with NN trained with

normalised current
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saturating the graph, the 4 models with the lowest

percentage error are presented. Where model 4

obtained an error percentage of 0.93%, model 6

obtained 1.69%, model 7 obtained 3.62% and model 8

obtained 4.62%. The decrease in error is noticeable

when overtrained models are not obtained.

Although, the trained NN models for the third set

only learned 21.3% in the RC parameter, they identi-

fied with high accuracy the parameters of the phys-

ical measurements.

The training of NN models using the union of the

second and third sets aimed to test whether RC

learning improves with more examples (840 sam-

ples). Using the same form of preprocessing as for the

third set (ID = ID�100), a performance of 94.7% for KP,

99.2% for VT and 12.03% in RC was obtained. The

learning of RC did not improve by having more

examples, on the contrary it decreased, this is because

the union of the second and third set shortened the

difference in the KP parameter, so that two samples,

one with a KP = 1.2 9 10–4 A/V2 and another with a

KP = 1.4 9 10–4 A/V2, both with the same value of

RC, have no great difference, considering that RC

affects the last region of VGS. Figure 10b shows the

Fig. 8 Average extraction

error rate for different

transistors

Fig. 9 Extraction and

modelling of T1NP with

extracted parameters. The

training of the NNs was done

using the second dataset
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physical measurement of T1NP and the curves

obtained using the extracted parameters, where again

the four with the lowest error are shown. Where

model 1 obtained a percentage error of 0.92%, model

2 obtained 0.06%, model 6 obtained 2.42% and model

8 obtained 0.51%. It is possible to observe that having

a greater number of examples did improve the

extraction of KP and VT, which was reflected in the

fact that more models obtained an error of less than

1%.

7 Conclusion

In this research, Artificial Neural Networks are pro-

posed for the parameter extraction process in Thin

Film Transistors IGZO with Al contacts. The param-

eters extracted were KP, VT and RC, as they are

parameters that allow modelling the behaviour of the

TFTs. Four different experiments were carried out to

prove that given the correct dataset of I–V sample

curves, the Neural Networks are capable to identify

and extract their parameters. In this work, errors

were comparable to and in some cases smaller than in

[21, 22].

In the first experiment, different models of NNs

were trained to extract the parameters KP and VT,

Fig. 10 Extraction and

modelling of T1NP-PN with

extracted parameters. Using

the third and fourth dataset

during training, where

a corresponds to the supplied

measurement from negative to

positive and b from positive to

negative
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where the average performance in the validation

measurements reached an R2 = 0.998, and in physical

measurements with minimum error rates of

1.68–2.04% (average of the best 4 models) because the

data sets designed for this experiment were in the

perfect range in the KP and VT sweeps. The result of

the NNs extraction showed higher accuracy com-

pared to the analytical method applied. In this

experiment, model 7 (4 layers of 256, 128, 64 and 32

neurons) obtained the lowest error rates in 3 of the 4

extractions presented.

In the second experiment, a trained NN model was

fed with a measurement of T1M1 to which, by means

of the simulator, different values of RC were added. It

was found that the trained NNs are able to com-

pensate the KP and VT values to fit measurements to

which a contact resistance was added from 0 to

64 9 103 X, with a percentage of error of about 2%

when RC\ 64 9 103 X. This allows the extraction of

parameters from I–V curves even with medium–high

resistances.

In the third experiment, the geometrical factor was

removed from the first dataset, multiplying the ID
current by L/W, in order to use the first dataset to

extract the parameters of physical measurements of

different sized transistors, which were also multi-

plied by their own L/W. In this experiment only 3

different models were trained, which obtained an

average R2 of 0.997 in the validation samples, and

from the 7 available dimensions an average error rate

of 16.89% was obtained. With the increased error in

this experiment, the extraction result with the ana-

lytical method was more accurate with an error of

about 9%. This experiment was proposed as a simple

way to overcome the need for samples to extract

parameters in transistors with different channel

widths and lengths. In this experiment, model 1 (2

layers of 128 and 64 neurons) was the one with the

lowest extraction error rate.

In the fourth experiment, the extraction of the

parameters KP, VT and RC was performed, for which

training was done using the second, third and a

union of these datasets. In the extraction using the

second dataset, an example was presented of how

NNs can learn to identify the parameters of valida-

tion samples with average R2 of 95.53% but fail in

extraction tests against physical measurements due to

overtraining. On the other hand, by using the third

dataset, overtraining was solved, avoiding excessive

preprocessing. In this way, an average R2 of 71.6%

was obtained, although it could be considered as low,

these trained NN models obtained minimum error

percentages of up to 0.93% in the extraction of

physical measurement. Finally, training was per-

formed with a dataset consisting of the second and

third data sets, from which an average R2 of 68.6%

was obtained, again, a low overall performance, but

with these trained NN models, error rates of up to

0.06% were obtained in extraction tests on physical

measurements. In the extraction of KP, VT and RC in

this experiment, model 8 (5 layers of 256, 128, 64, 32

and 16 neurons) had one of the lowest errors in the

extractions presented, using both the third and fourth

training set.
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